

V Semester B.A./B.Sc. Examination, November/December 2014 (Semester Scheme) (O.S.) (Prior to 2013-14) MATHEMATICS – V

ne: 3 Hours

Max. Marks: 90

Instructions: Answer all the questions.

Answer any fifteen of the following:

(15×2=30)

- 1) Define a commutative ring. Prove that $(-1)a = -a \forall a \in R$.
- 2) Give an example of a division ring which is not a field.
- 3) Prove that the intersection of two subrings of a ring is subring.
- 4) If R is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then show that $r(a) = \{x \in R / ax = 0\}$ is a ring and $a \in R$ then $a \in R$
- 5) Prove that a homomorphic image of a commutative ring is commutative.
- 6) Show that the set $S = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} \middle/ a, b, c \in Z \right\}$ is a subring of the ring $M_2(Z)$ of all 2×2 matrices over the set of integers.
- 7) Show that $\frac{d}{dt} \left[\vec{f} \times \frac{d\vec{f}}{dt} \right] = \vec{f} \times \frac{d^2 \vec{f}}{dt^2}$.
- 8) Find the unit tangent vector at any point t on the curve $x = 2 \log t$, y = 4t, $z = 2t^2 + 1$.
- 9) Write the serret Frenet formula for the space curve $\vec{r} = \vec{r}(s)$.
- 10) The cartesian co-ordinates of a point are (2, 2, 1), find the cylindrical co-ordinates.
- 11) For the curve x = t, $y = t^2$ and $z = \frac{2}{3}t^2$, find the equation of the normal plane at t = 1.
- 12) If $\phi(x,y,z) = x^3 y^3 + xz^2$ find $|\nabla \phi|$ at the point (1, -1, 2).
- 13) Find the unit normal vector to the surface $x^2 + 2y 3z^2 = 5$ at (1, 2, 0) on it.

- 14) If \vec{F} and \vec{G} are irrotational then show that $\vec{F} \times \vec{G}$ is solenoidal.
- 15) If $\phi = x^2 y^2 + 4z$. Show that $\nabla^2 \phi = 0$.
- 16) Find the directional derivative of $\phi(x, y, z) = x^2 y^2 + 4z^2$ at (1, 1, -8) in the direction of $2\hat{i} + \hat{j} \hat{k}$.
- 17) Write the Rodrigue's formula for the Legendre polynomials.
- 18) Prove that $P_n(-1) = (-1)^n$.
- 19) Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cdot \cos x$.
- 20) Prove that $J_n(x) = \frac{x}{2n} [J_{n-1}(x) + J_{n+1}(x)].$

II. Answer any four of the following questions:

(4×5=

- 1) Prove that the set S = {0, 1, 2, 3, 4} is a ring under addition modulo 5 and multiplication modulo 5.
- 2) If R is a ring such that $a^2 = a \forall a \in R$.

Prove that

- i) $a+a=0 \forall a \in R$
- ii) $a+b=0 \Rightarrow a=b$
- iii) R is a commutative ring.
- 3) Prove that every finite integral domain is a field.
- 4) Prove that the set of all matrices of the form $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ where $a, b \in Z$ is a rigideal of the ring of 2×2 matrices over Z. Show that it is not a left ideal.
- 5) If $\phi: R \to R'$ is an homomorphism, then prove that
 - i) Ker o is a subring of R
 - ii) $\phi(R)$ is a subring of R'.
- 6) Prove that an ideal S of a commutative ring R with unity is maximal if and only if the residue class R/K is a field.

II. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) For the space curve $x = a \cos t$, $y = a \sin t$, z = bt show that $K = \frac{a}{a^2 + b^2}$ and $\tau = \frac{b}{a^2 + b^2}$.
- 2) Find the equation of the tangent plane and normal line to the surface $2xz^2 3xy 4x = 7$ at (1, -1, 2).
- 3) For the space curve x = t, $y = t^2$, $z = \frac{2}{3}t^3$, find the unit tangent vector at t = 1.
- 4) Show that the surface $5x^2 2yz 9x = 0$ is orthogonal or the surface $4x^2y + z^3 = 4$ at (1, -1, 2).
- 5) Show that the cylindrical co-ordinate system is an orthogonal curvilinear co-ordinate system.

V. Answer any three of the following:

 $(3 \times 5 = 15)$

- 1) If $\vec{F} = 3xyz^2\hat{i} + 2xy^3\hat{j} x^2yz\hat{k}$ and $\phi(x, y, z) = 3x^2 yz$ find $\vec{F} \cdot \nabla \phi$.
- 2) Show that $\vec{F} = \left(x^2 yz\right)\hat{i} + \left(y^2 zx\right)\hat{j} + \left(z^2 xy\right)\hat{k}$ is irrotational. Find ϕ such that $\vec{F} = \nabla \phi$.
- 3) Show that $\nabla^2(\mathbf{r}^n) = \mathbf{n}(\mathbf{n}+1)\mathbf{r}^{n-2}$ where $\mathbf{r} = |\vec{r}|$ and $\vec{r} = \mathbf{x}\hat{\mathbf{i}} + \mathbf{y}\hat{\mathbf{j}} + \mathbf{z}\hat{\mathbf{k}}$.
- 4) Prove that div (curl \vec{F}) = 0 and curl (grad ϕ) = 0.
- Derive an expression for the gradient of a scalar point function in orthogonal curvilinear co-ordinates.

25) If any three of the lallowing:

V. Answer any two of the following:

- 1) Prove that $x^3 + 2x^2 x + 1 = \frac{5}{3}P_0(x) \frac{2}{5}P_1(x) + \frac{4}{3}P_2(x) + \frac{2}{5}P_3(x)$.
- 2) Show that $\int_{-1}^{+1} P_m(x) P_n(x) = 0$ for $m \ne n$.
- 3) Show that $\int_{-1}^{+1} x^2 P_{n+1}(x) P_{n-1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}.$

Forms space curve x = t, y = t', z = t', income NO mogent vector art = 1

Prove that
$$J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[\frac{\sin x - x \cos x}{x} \right]$$
 and $MSCW$

a Snow that F = (or - yz) i = (y' - zr |) + (z' - xr) x is (missional trinding such

$$J_{-\frac{3}{2}}(x) = -\sqrt{\frac{2}{\pi x}} \left[\frac{x \sin x + \cos x}{x} \right]$$

4) Show that $\frac{d}{dx} \left[J_n^2 + J_{n+1}^2 \right] = \frac{2}{x} \left[n J_n^2 - (n+1) J_{n+1}^2 \right].$